首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3379篇
  免费   227篇
  国内免费   364篇
  2023年   40篇
  2022年   45篇
  2021年   84篇
  2020年   113篇
  2019年   120篇
  2018年   90篇
  2017年   104篇
  2016年   85篇
  2015年   96篇
  2014年   115篇
  2013年   216篇
  2012年   148篇
  2011年   126篇
  2010年   117篇
  2009年   158篇
  2008年   148篇
  2007年   173篇
  2006年   158篇
  2005年   175篇
  2004年   124篇
  2003年   121篇
  2002年   97篇
  2001年   84篇
  2000年   89篇
  1999年   68篇
  1998年   84篇
  1997年   82篇
  1996年   64篇
  1995年   69篇
  1994年   71篇
  1993年   61篇
  1992年   62篇
  1991年   55篇
  1990年   57篇
  1989年   36篇
  1988年   46篇
  1987年   35篇
  1986年   39篇
  1985年   50篇
  1984年   64篇
  1983年   25篇
  1982年   31篇
  1981年   28篇
  1980年   29篇
  1979年   13篇
  1978年   18篇
  1977年   16篇
  1976年   18篇
  1975年   7篇
  1973年   7篇
排序方式: 共有3970条查询结果,搜索用时 15 毫秒
81.
Germplasm of 21 diverse Argyranthemum taxa was collected from contrasting ecological zones in the Canary Islands. Seed dormancy was considerable in the majority of taxa. Extensive investigations, based on a germination test procedure algorithm for Asteraceae, with achenes from ray and disc florets of five contrasting taxa identified a procedure to promote full (85%) germination of the seeds from both ray and disc florets of all five taxa; viz, excision of the seeds from the achenes, followed by testing at 15°C with 2.6×10-3 m GA3 co-applied. Subsequent tests showed that this regime was effective in promoting full germination in seeds from both ray and disc florets of the remaining 16 taxa. The results are discussed in the context of ex situ plant germplasm conservation.  相似文献   
82.
Transgenes introduced into crops can escape in time, as well as space, via the seed bank. For annual plants, especially ruderals, seed bank behaviour may be the most important factor determining population persistence. Crop seeds may exhibit some dormancy and germination cueing in the soil but are expected to be less able to persist than their wild relatives, which often have considerable dormancy and longevity, as well as effective germination cueing responses. Crop-wild hybrids may have seed bank characteristics more suited to persistence, and maternal effects may favour persistence of hybrids having wild plants for their female parent. Escape of transgenes via crop-wild hybrids presents unique concerns not present for crops. Hybrids can undergo natural selection and may back-cross with wild plants. We suggest methods that can be used in conjunction with evaluation of the relative fitness of crop-wild hybrids that will determine the likelihood of back-crossing. Accurate assessment of escape in time and transgene persistence via crop-wild hybrids requires proper plant materials. We emphasize the use of null segregants as controls for transgenic crops and for generating crop-wild hybrid controls for transgenic hybrids. Since good empirical and theoretical understanding of how individual genes influence the fate of plants in different environments is lacking, evaluation of escape in time and the persistence of transgenes via crop-wild hybrids should be on a case-by-case basis.  相似文献   
83.
在实验条件下,供试的林木、农作物及牧草种子均能在铅锌矿尾矿中萌发,其中萌发率与非污染土壤中的相近,多数种子的萌发速率低于对照组。供试植物幼苗出土30天内没有死苗现象,但与对照相比,株高下降28.4%,复叶数减少34.1%,生物量下降52.6%.  相似文献   
84.
Possible mechanisms of afterripening in Xanthium seeds   总被引:1,自引:0,他引:1  
Breaking dormancy in some seeds requires a period of dry storage. In the seeds of Xanthium pennsylvanicum Wallr., the process of afterripening proceeds optimally at water contents between 7 and 14%: this range of dehydration can be identified with water binding region 2, in which water is bound with low enthalpy. At water contents below 7%. Seeds remained primarily dormant over 3 years. Attempts to alter the afterripening with atmospheres of elevated nitrogen showed no effect. and with oxygen there was no consistent effect. There were no changes is osmotic value of the seed sap, or in its sugar or amino acid contents. We speculate that afterripening in Xanthium may involve some nonenxymatic reactions which remove substances which inhibit germination. Candidates for these reactions include the Amadori and Maillard reactions.  相似文献   
85.
Effects of light and temperature on gibberellin (GA)-induced seed germination were studied in Arabidopsis thaliana (L.) Heynh. with the use of GA-deficient ( gal ) mutants, mutants with a strongly reduced sensitivity to GA ( gai ) and with the recombinant gai/gal . Seeds of the gal mutant did not germinate in the absence of exogenous GAs, neither in darkness, nor in light, indicating that GAs are absolutely required for germination of this species. Wild-type and gai seeds did not always require applied GAs in light. The conclusion that light stimulates GA biosynthesis was strengthened by the antagonistic action of tetcyclacis, an inhibitor of GA biosynthesis. In wild-type, gal and gai/gal seeds light lowered the GA requirement, which can be interpreted as an increase in sensitivity to GAs. In gai and gai/gal seeds light became effective only after dormancy was broken by either a chilling treatment of one week or a dry after-ripening period at 2°C during some months. The present genetic and physiological evidence strongly suggests that temperature regulates the responsiveness to light in A. thaliana seeds. The responsiveness increases during dormancy breaking, whereas the opposite occurs during induction of dormancy (8 days at 15°C pre-incubation). Since light stimulates the synthesis of GAs as well as the responsiveness to GAs, temperature-induced changes in dormancy may indirectly change the capacities to synthesize GAs and to respond to GAs. GA sensitivity is also directly controlled by temperature. It is concluded that both GA biosynthesis and sensitivity to GAs are not the primary controlling factors in dormancy, but are essential for germination.  相似文献   
86.
Nonstructural carbohydrates in dormant and afterripened wild oat caryopses   总被引:1,自引:0,他引:1  
Nonstructural carbohydrates were determined in both embryo and endosperm of dormant (nongerminating) and afterripened (germinating) intact caryopses of wild oat ( Avena fatua L.). No changes in endosperm starch or soluble sugar were observed at the onset of germination (18 h). No changes in glucose, fructose, sucrose or starch within dormant or afterripened embryos correlated with onset of visual germination. In afterripened embryos, depletion of raffinose (18 h), stachyose (18 h) and galactose (24 h) was correlated with germination. In contrast, raffinose-family oligosaccharide levels in dormant embryos remained constant for 7 days following imbibition. Germination of isolated dormant embryos on 88 m M galactose-containing media was accompanied by decreased endogenous levels of raffinose and stachyose. Isolated embryos from dormant caryopses incorporated 14C from 14C-fructose into both raffinose and stachyose during 24 h of imbibition. In contrast, no 14C incorporation into stachyose was observed in embryos from afterripened caryopses. No 14C incorporation into raffinose was observed at 18 and 24 h. When in vitro activities of α galactosidase were measured, no temporal differences between dormant or afterripened caryopses were detected in either embryo or endosperm tissue. Although the mechanism associated with differences in utilization of raffinose and stachyose is yet unidentified, alterations in raffinose-family oligosaccharide metabolism in the embryo appear to be a unique prerequisite for afterripening-induced germination.  相似文献   
87.
Effects of dark incubation at different temperatures were studied on dormancy and respiratory activity of seeds of Sisymbrium officinale (L.) Scop. Because germination of this species absolutely depends on the simultaneous action of light and nitrate, changes in dormancy could be studied in darkness without the interference of early germination events. Upon the start of incubation rates of O2 uptake and CO2 release rose. This was followed by a gradual decrease until stable levels of O2 uptake and CO2 release were achieved. Seeds kept for prolonged periods at 24°C, showed neither a change in germination capacity nor in rates of O2 uptake and CO2 release. Respiratory quotients were 0.55–0.7. The initial rise in O2 uptake correlated with the rate of water uptake and with breaking of primary dormancy. However, the subsequent decline in O2 uptake was not generally linked to induction of secondary dormancy. An increased O2 uptake was not required during breaking of secondary dormancy. It is concluded that changes in dormancy are not generally related to changes in respiratory activity. However, germination strongly depends on respiration. The increase in O2 uptake started well before radicle protrusion. A far red irradiation only reversed this increase when it was given before germination escaped from its red light antagonising action. The contribution of different respiratory pathways was followed during prolonged incubation at 24°C in darkness. KCN at 1.5 mM was needed to inhibit the cytochrome pathway (CP) and benzohydroxamic acid (BHAM) at 30 mM to inhibit the alternative pathway (AP). These concentrations did not exert any side effects. Electron flow was predominantly via the CP, maximally 10% was via the AP. Flow through the CP declined during the first 6 days and residual respiration remained constant. Therefore, the contribution of residual respiration became relatively more important with prolonged incubation. KCN at concentrations that almost completely inhibited flow through the CP, did not dramatically reduce germination. BHAM already inhibited germination at concentrations that do not inhibit oxygen uptake.  相似文献   
88.
A (13, 14)--glucan 4-glucanohydrolase [(13, 14)--glucanase, EC 3.2.1.73] was purified to homogeneity from extracts of germinated wheat grain. The enzyme, which was identified as an endohydrolase on the basis of oligosaccharide products released from a (13, 14)--glucan substrate, has an apparent pI of 8.2 and an apparent molecular mass of 30 kDa. Western blot analyses with specific monoclonal antibodies indicated that the enzyme is related to (13, 14)--glucanase isoenzyme EI from barley. The complete primary structure of the wheat (13, 14)--glucanase has been deduced from nucleotide sequence analysis of cDNAs isolated from a library prepared using poly(A)+ RNA from gibberellic acid-treated wheat aleurone layers. One cDNA, designated LW2, is 1426 nucleotide pairs in length and encodes a 306 amino acid enzyme, together with a NH2-terminal signal peptide of 28 amino acid residues. The mature polypeptide encoded by this cDNA has a molecular mass of 32085 and a predicted pI of 8.1. The other cDNA, designated LW1, carries a 109 nucleotide pair sequence at its 5 end that is characteristic of plant introns and therefore appears to have been synthesized from an incompletely processed mRNA. Comparison of the coding and 3-untranslated regions of the two cDNAs reveals 31 nucleotide substitutions, but none of these result in amino acid substitutions. Thus, the cDNAs encode enzymes with identical primary structures, but their corresponding mRNAs may have originated from homeologous chromosomes in the hexaploid wheat genome.  相似文献   
89.
Meiosis and ascospore development in the four-spored pseudohomothallic ascomycetes Neurospora tetrasperma, Gelasinospora tetrasperma, Podospora anserina, and P. fefraspora have been reexamined, highlighting differences that reflect independent origins of the four-spored condition in the different genera. In these species, as in the heterothallic eight-spored N. crassa, fusion of haploid nuclei is followed directly by meiosis and a postmeiotic mitosis. These divisions take place within a single unpartitioned giant cell, the ascus, which attains a length of >0.1 mm before nuclei are enclosed by ascospore walls. Two basically different modes underlie the delivery of opposite mating type nuclei into each of the four ascospores in the different genera. In N. tefrasperma on the one hand, the mating type locus is closely centromere-linked. Mating types therefore segregate at the first meiotic division. The second division spindles of N. tefrasperma overlap and are usually parallel to one another, in contrast to the their tandem arrangement in N. crassa. As a result, nonsister nuclei of opposite mating type are placed close together in each half-ascus and a pair is enclosed in each ascospore. In the Podospora and Gelasinospora species on the other hand, the second-division spindles are in tandem, with sister nuclei of opposite mating type associated as a pair in each half-ascus. It is established for P. anserina and inferred for P. fetraspora and G. fefrasperma that a single reciprocal crossing over almost always occurs in the mating type-centromere interval, ensuring that mating types segregate at the second meiotic division and that nuclei of opposite mating type are enclosed in each ascospore. Other differences are also seen that are less fundamental. Neurospora tetrasperma differs from the other species in the orientation of chromosomes and spindle pole body plaques at interphase (I.) Third-division spindles are oriented parallel to the ascus wall in Gelasinospora but across the ascus in Podospora and Neurospora. The two Podospora species differ from one another in nuclear behavior following mitosis in the young ascospores. In P. tefraspora, two of the four nuclei migrate into the tail cell, which degenerates, leaving one functional nucleus of each mating type. In P. anserina, by contrast, only one of the four nuclei moves into the tail cell, leaving the germinating ascospore with two functional nuclei of one mating type and one of the other. The pseudohomothallic condition with its heterokaryotic vegetative phase has significant consequences for both the individual organism and the breeding system. Genetic controls of development and recombination are complex. Inbreeding is not obligatory. © 1994 WiIey-Liss, Inc.  相似文献   
90.
在实验条件下,供试的林木、农作物及牧草种子均能在铅锌矿尾矿中萌发,其中萌发率与非污染土壤中的相近,多数种子的萌发速率低于对照组.供试植物幼苗出土30天内没有死苗现象,但与对照相比,株高下降28.4%,复叶数减少34.1%,生物量下降52.6%.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号